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I. Phys: Coodens. Matter 4 (1992) 5967-5976. Printed in the UK 

Semiempirical self-energy corrections to LDA bands of 
semiconductors, and a scaling law for the scissor operator 
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AbslracL A semiempirical approach Io the waluation of mrrectiom to WA electronic 
slates and effective masses in semiconductors is described. Applications Io Gaks, AL4%, 
Ge, Gal-,AI,As VCA alloys are presented, and a scaling law for the scissor operator is 
discussed. 

1. Introduction 

The local density approximation (LDA) to density functional theory (DFT) [l] is a 
very successful method for calculating electronic and structural properties of solids. 
Computational procedures based on the IDA, though, are known to underestimate 
the band gaps of semiconductors systematically [2, 31; this problem has been shown 
to be intrinsic to DFT itself [l, 4, 51. The description of the excited states in a crystal 
requires the computation of the quasiparticle (QP) spectrum of the system, i.e. the 
solution of a selfconsistent one-body equation involving the energydependent, non- 
local electron seIf-energy, an operator that is generally constructed to lowest order in 
many-body perturbation theory in the GW approximation of Hedin [6, 7'J. 

GW calculations have provided impressive progress [S, 81, but they are very elabo- 
rate and time-consuming as compared to the !DA; such are also, although to a lesser 
degree, the approximate approaches of [9,10] to computing self-energy corrections to 
LDA electronic states. Furthermore, once applied to the bulk materials, none of these 
techniques are easily 'exportable' to more complex related systems, either because 
of the specific approximations involved (in the case of models), or the sheer com- 
putational load (as for full calculations). It is thus desirable to devise some simpler 
technique to estimate self-energy corrections to U)A eigenvalues in hulk solids and 
related systems. 

In the present work we discuss a semiempirical approach to the problem. The 
focus is on correcting the LDA bands in a class of materials by a procedure that incor- 
porates as much as possible of the relevant physics (long-range, dielectric screening, 
energy dependence), with the goal of precise (6 U 0.01-0.05 ev) eigenvalues and re- 
lated properties (say masses), simplicity, rapidity, and transferability to more complex 
systems (alloys, superlattices). 

8 Present address: Fritz-Hater-lnstitut der Max Planck Gesellschaft, Faradapveg 4 6 ,  W-1 Berlin 33, 
Federal Republic of Germany. 
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2. Method 

The leading term in the many-body expansion of the self-energy in powers of the 
screened interaction-that is, the GW form of the selfenergy-is [6, 5] 

V Fwrenlini and A Baldereschi 

47r i J  C GW (.,.',E) = - eiW6G(r,r';E+ E')W(r,r';E')dE' (1) 

with 6 an infinitesimal number, G the one-electron Green's function and W the 
effective screened interaction. The spatial range of this quantity is determined by the 
potential W; while in metals the Coulomb interaction is well screened and the poten- 
tial decays rapidly as lr - r'l + 00 ( in the RPA, W U T - ~  times Friedel oscillations) 
and the self-energy is short-ranged 11, 7, in semiconductors W + l / ( ~ - / r  - r'l) in 
the same limit, due to the incomplete. screening of the Coulomb interaction [lo]. In 
the case of h u l a t o n  we may then decompose W into a short-ranged metal-like part 
(whence one recovers the local exchange-correlation potential of the inhomogeneous 
electron gas VkDA, if its weak energy dependence is neglected), and a longranged 
part, small as lr -r'J + ~ O  and with the above long-range behaviour. The expectation 
value of the self-energy part related to this term, 6C, is known to be discontinuous 
across the energy gap [S, 8, 10, 111. The goal of the present work is then to repro- 
duce 6C, the slowly varying long-ranged correction to V."*, by means of a smooth 
non-local potential. 

The technique is as follows. n e  equilibrium structure and volume of the bulk 
crystal are determined ab inih hy a converged IDA [12] pseudopotential [13] plane- 
wave calculation (using 10 special IC-points [I41 and a cut-off of 20 Ryd) and the eleo 
tronic eigensystem is computed at a set M of additional selected IC-points ( r , X , L  
in the present case). We then solve the eigenvalue problem for the 'empirical quasi- 
particle' (EQP) Hamiltonian H = HLDn + V,, expanding the M P  eigenstates on 
the basis of IDA eigenstates. HLDA is the self-consistent IDA Hamiltonian, and the 
non-local potential V, is a sum of lo&l potentials projected onto occupied (valence) 
and virtual (conduction) states: 

v, = VgP" + V,C(l- P") (2) 

with P, = 
in Fourier space as 

Iuk)(vkl the projector on the I D A  valence manifold. V i  is expanded 

V ~ ( T )  = V$(G)S(G)eiG.' = ~ V , S " ( G ) e i G "  (3) 
G 0 

(S = C,eiG'T* is the crystal basis structure factor, the G are reciprocal-lattice 
vectors, and V i  is defined by the second equality), and analogously for V;. 

The matrix elements of H between LDA eigenstates (mk) and (nk) are 

(4) LDA 6 A,,,,= = C~,,(G)C,,,(G')V,S'(G- 6) + &,E m,n 
G,G' 

where m,n = 1,. . . , N are band indices, C the coefficients of the plane-wave 
expansion of the IDA wavefunction at a specific IC-p,int, and G,G' are reciprocal- 
lattice vectors. Matrix elements between conduction and valence states are zero by 
construction, so in (4) the label i stands for either c or v.  
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W i l e  N is ked for valence, when dealing with conduction states an appropriate 
truncation N = N, of the expansion of EQP functions on LDA states must be chosen; 
since the potential turns out to be quite weak, couplings of the states of interest 
with bands much higher in energy become rapidly negligible, and N = N, Y 10 is 
found to be sufficient. The value of N ,  should be chosen carefully to avoid artificial 
splittings of degenerate multiplets. In the present &rk we typically use N, Y 25-30 
depending on k and degeneracies. 

The Fourier components VE(G) are determined by the requirement that the com- 
puted eigenvalues be equal to the corresponding experimental values within experi- 
mental error (see below); this amounts to a multidimensional non-linear optimization 
process, which can be translated into a minimization problem for an appropriate cost 
function, as shown below. The latter problem is solved by the robust simplex method 
of Nelder and Mead [U]. In order to estimate the distance of the experimental band 
structure from the calculated one (which is a functional of V,) and to produce the 
potential V, minimizing this distance, we use a wst function given by the infinity 
norm of the calculation-to-experiment error, that is, the maximum weighted deviation 
of the calculated eigenvalues from the pertaining experimental values, 

F, = leim = max iEM wi (E,"h - E?). (5) 

The weight for the ith state is the ratio of a reference experimental error e ,  = 
min{i6Ml ei to the ith experimental error 

wi = (er/ei)Pi (6) 

with i running over the set M of the relevant states considered in the minimization 
process (the siie of this set is usually restricted by the small number of  available 
experimental data [16]). Very accurate experimental values (w 1) can be over- 
weighted by choosing p > 1, our value of p ranging from 1 to 1.1. The computation 
of the wst function amounts to calculating the eigensystem of the Hamiltonian H on 
the basis of LDA eigenfunctions, at each of the points of the set M .  The eigenenergies 
are 

E:h 3 Ei,EQP = E,,,,, i- (~EQP~IVEI~EQP~) (7 
Of course, these energies will depend critically on the IDA eigenvalues [3]. The 
eigenfunctions of H+V, are the EQP wavefunctions liEQpb) = cj qjljLDAk), which 
we find to closely resemble LDA states, that is 

E;,,,, i- (iQPfi:l~CIigPk.). 

I ~ E Q P ~ )  = I ~ L D A ~ )  I ~ Q P ~ )  (8) 

where the second equality between GW QP and LDA states is by now well established 
15, SI. 

For the cases examined here, the minimization converges to a single point in the 
parameter space of Fourier coefficients of VE in a limited number of simplex itera- 
tions quite independently of the starting point. Occasional minimization restarts are 
performed as a check. The computational cost of the whole optimization procedure 
for a s p d c  bulk material is modest, 500 to 800 mu seconds on a Cray X/MP for 
conduction states with the present plane-wave basis size of about 450 in the zincblende 
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structure and depending on the initial conditions (use of softer pseudopotentials [17I 
may allow a further reduction of the computational effort). 

However, the evaluation of the corrections for a potential determined previously 
for a specific material is equivalent to a single evaluation of the cost function (that 
is, of the corrected eigenvalues) which is a matter of less than 1 CPU second per 
k-point Cor the present basis. This allows us to compute a good approximation 
to quasiparticle energies and wavefunctions, and related quantities, at basically no 
expense with respect to the mother ~DA calculation; in fact, while the procedure is 
only carried out at some selected points in the Brillouin zone, the potential accordingly 
modifies the band structure everywhere else in the zone. 

V Fiorentini and A Baldereschi 

3. Calculations and results 

The materials we focus upon here are GaAs, AlAs and Ge. In view of thc reasonable 
agreement of I D A  calculations [Z, 3, 5, S] with Gw calculations and experiment for 
valence states, we set the valence self-energy correction to zero, and concentrate on 
that pertaining to conduction states. Clearly the procedure is the same for valence 
states, apart from a readjustment of the global energy zero; owing to the need for 
a fixed reference zero in the calculation, one cannot estimate constant shifts of the 
quasiparticle band structure relative to the I D A  one, so many-body corrections to 
U)A valence band tops, relevant to the band offset interface problem, are outside the 
scope of the present approach. 

As anticipated above, the dependence on the JDA energies is crucial, so we take 
care in fully converging the eigenvalues (the maximum deviation is less than 10 meV 
for the conduction m i n i u m  in GaAs), and choose to work with the crystal at zero 
pressure, Le. at the theoretical equilibrium volume R = &. As discussed in [3], this 
avoids dependence of the eigenvalues on the choice of pseudopotentials and most 
other details of the IDA calculation. 

As a general strategy, given the limited number of experimental data, and the 
expected longranged nature of the potential, we only consider Fburier components 
of VE up to the (200) FCC reciprocal-lattice shell. This is a sound choice dictated 
by the physical considerations on 6C outlined in the previous section, but it is also 
convenicnt on the computational side, since it cuts down on parameter space di- 
mensionality and matrix element computation, and it keeps the optimization problem 
underdetermined (fewer data than fitting parameters). 

For zincblende and diamond structures, we have then four and two free parame- 
ters per material, respectively. The total of ten free parameters for the three materials 
is well below the number of experimental data: it is nevertheless important to look 
for possible transferability rules of the potential (or parts thereof) among different 
materials, which will allow a reduction of the number of free parameters. 

Non-trivially, the independent minimizations for each material do nicely reproduce 
the experimental data (within the respective errors), and show that 

(i) the Fourier spectrum of V, is dominated by the G = (000) component, the 
scissor operator A, which is of order 0.5-1 ev; 

(i) in Ge the G + 0 component vanishes (this is a computational finding, and 
not a symmetry restriction); 
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(ii) the scissor operator A scales as the ratio of the high-frequency dielectric 
constants; that is, e x A is a constant: 

A = a l e  (9) 

with Q -9 eV 
Thus the scissor operators of the different materials are not independent parameters; 
this reduces the number of free parameters for the three materials to seven (neglecting 
the vanishing G = (111) component in Ge; the available experimental data number 
13). 

The scaling law of the scissor operator, equation (9), is a useful rule of thumb 
which can be applied to obtain reasonably accurate estimates of gaps. In many cases 
(e.g. for wide gaps), the IDA estimate alone is useless, and this rule provides a 
correction restoring at least an order-of-magnitude agreement. It turns out in fact 
that the validity of this rule extends well beyond semiconductors. In figure 1 we 
show the difference A between IDA-calculated and experimental gaps for a number 
of materials, which shows the rule (9) to hold nicely up to very large gaps. In panel 
(a) the linear fit of the data velsus 1/c gives Q N 9.3; in panel @), which is a blow-up 
of the semiconductor region, the fit gives a Y 9.1. The rule is seen to give correct 
predictions within 10% or less. The I D A  calculations are our pseudopotential ones 
for mast semiconductors, whereas all-electron calculations are considered for most 
wide-gap materials [IS]. It should be noted that this finding is most useful in wide-gap 
materials, and in general in all cases in which the JDA gap error h unambiguously 
prevailing over other sources of computational inaccuracy; in such cases, a precision 
of 10% is largely sufficient to give a sensible estimate of the gap. Also, the scissor 
may be in many instances a reasonable correction to the band structure as a whole, as 
we found here to be the case for Ge at zero pressure (see 13, 191 for more thorough 
discussions). 

We found out that a result similar to ours (equation (9)) has been independently 
obtained in a different context by von der Linden et a1 [ll], who find that their NFE 
GW self-energy correction to the fundamental gap of diamond as a function of E is 
indeed proportional to 1 / E ,  the value of the proportionality coefficient being a Y 9.0 
eV (extracted from figure 1 of [I l l  at e = 1). At the actual physical value of e, a 
gap in good agreement with experiment is obtained. QP calculations by Hanke and 
Sham 1201 also show a similar linear behaviour of the gap correction (although the 
constant is about 20% smaller due to the gap of ECI, which is still underestimated 
in [20]). We have also reached a similar conclusion computing the scissor operator 
in the q + 0 limit of the GW COHSEX approximation. In that limit, the correction to 
the gap is (equation (S) of [lo]) 

where V,, is the Brillouin zone volume, the sum over special points is replaced by 
an integration over a sphere of volume V,, = 4rk&/3, and are a model 
semiconductor dielectric function and the Lindhard dielectric function, respectively. 
The dependence of the scissor operator on density and dielectric constant is pictured 
in figures 2(a) and (b), using respectively the dielectric functions of Bechstedt and 
Del Sole 1211, and of Resta 1221. In the latter case, the Thomas-Fermi function is 
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used instead of the Lindhard one for the electron gas. As expected [U], it tum out 
that the diagonal dielectric screening is not accurate in highly insulating materials, 
local fields being neglected altogether; in the lowdensity regime (typically semicon- 
ductors), however, the simplified GW COHSEX scissor agrees with the empirical linear 
law discussed above, which describes the actual correction quite well. It should be 
noted that the error bar due to different model dielectric functions is at least of order 
10% (the Bechstedt-Del Sole function, however, has been recently shown (241 to give 
results of quality comparable to the calculation of [lo], which used the diagonal of 
the inverse dielectric matrix). 

V Fiorentini and A Baldermchi 
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Rgurc L The scaling rule tor the seissor operator 
(panel (a)), and a blow-up of the high-e region 
(panel e)). The data points indicate Ihe scirsor 
operator as delemined m the present w o k  tor 
C, LnP, &Se, ZnS, ZnO, MgO, LjCI, NaCI, UF, 
Kr, Ar the difference between the experimental and 
computed gaps is plotted inslead [IS]. Error bars 
are 10% of the data. 
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Figure 2 The Gw 9 + 0 scissor operator as a 
funclion of Uc, paramewed by the lallice mnstant 
a0 of the FCC lallice cell tor eight electrons, den- 
siIy = 8/(ai/4). In panel (a) the (Lindhard-tibe) 
Bechstedt-Del Sole PI] model is used; in panel @) 
the (l%omas-Fermi-like) Resta PZ] model is used. 
The empirical rule obtained in the present wrk is 
shown as black doh and a continuous tine. 

The weighted experimental band energies at r, X, L determine the potential V,, 
which modifies accordingly the bands over the whole Brillouin zone: the IDA and 
corrected bands along high-symmetry lines are shown in figure 3. The correction 
to band dispersion also affects other properties: an interesting test is the effective 
masses (it should be noted that no infomalion on effective masses is embedded in 
the minimization procedure). The computed IDA values of the conduction electron 
mass [3] in A h ,  G a b ,  and Ge at r are 0.122, 0.064, and 0.029 at zero pressure. 
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The correction potential modifies the masses only very slightly: the corrected values 
are 0.065 (experimental value: 0.0665), 0.125 (experimental value: 0.124) and 0.029 
(experimental value: 0.037) for G a b ,  AlAs and Ge respectively, in good agreement 
with experiment [25]. These small corrections, however, result from cancellation of 
large contributions; this can be seen in figure 4, where the dependence on the different 
components of the correction potential V, is shown for the electron effective mass 
at r in GaAs (at fieX). 

. . .  

Pigun 3. A k ,  Ge and G a b  conduction bands 
r e f e r r e d  to the valence band top. W A  bands are 
shown by Mack q u a m  and dashed tines; corrected 
bands are shown by open cilrla and sotid tines. 

.0.2 .O,l 0 0.1 0.2 0.3 
"E,s", 

Figme 4 The conduction effective mas at r in 
GaAs as modified by the various symmevic and 
anljrmmetric mmponenls of V, (the basis vectors 
of the lattice are 71 = 0 and 72  = o o ( l , l ,  1)/4). 

Finally, the correction potentials obtained for bulk GaAs and AIAs have been 
applied to the ternaly alloy AI,Ga,-,As. A Linear interpolation V, - 2: VZaAs -I- 
(1 - x) ViiAs is used for V,. The IDA eigensystem is calculated self-consistently as 
a function of x in the virtual-crystal approximation; the technicalities are the same 
as for the bulk. The virtual-crystal lattice constant is interpolated linearly between 
those of GaAs and ALb according to Vegard's law, a behaviour confirmed by linear- 
response-theory supercell calculations [%]. The LDA bands are shown in figure 5(u), 
and the corrected bands in figure 5(b). The crossover mole fractions are given in 
table 1: although the situation is not very satisfactory, it is a vast improvement 
on the bare IDA case. The E,(x) relations are found to he essentially linear, the 
bowing parameters (given in table 2) being an order of magnitude smaller than the 

alloy - 
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experimental values: this is not unexpected, since the bowings (as well as higher-order 
effects) are in fact a manifestation of microscopic alloy disorder [26], which is absent 
in the h t u a l  crystal. The effective mass of electrons at r is estimated to change with 
composition as m"(z) = 0.065 + 0.062.  

V Fwrentini and A Baldereschi 

crossing WA Present Experiment 

r-x aios 0.345 0.405 
r-r. a385 0.720 0.432 
L X  ao4o 0.155 0.350 

2 

> 
1.6 

1.4 

1.2 

1.5 
o 0.2 0.4 0.6 0.a t 0 0.2 0.4 0.6 0.8 1 

ngorc 5. WA (panel (a)) and corrected (panel @)) elecvonic stales at I I-, X for a 
Vegard WA AI,Gal-,& alloy as a function of 2 .  

X x 

Table 2 Alloy towing paramelea C ( E ( z )  = A + Bz + Cz(l  - s)). 

Wansition Present Experiment 
~~ ~~ 

r -+ L -0.001 0.0~s 
r -, x oazi 0.245 
r - r  0.025 0.370 

4. Conclusions 

We have described a simple method for approaching the IDA gap problem in bulk 
semiconductors and related systems; it amounts to an optimization procedure pro- 
ducing a smooth semiempirical non-local potential, which reproduces the effect of the 
long-range part of the self-energy associated with incomplete screening in insulators. 
Tbe technique has been applied to &As, Ge, ALks, and the AlGaAs alloy. An 
interesting linear scaling rule for the scissor operator versus the dielectric constant 
has been obtained, which is valid also for wide-gap materials. 
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